

Root page of my blog

Contents:

	Attention: This blog has moved

	How to use pythonbrew and virtualenv

	How to use Libre Office serial document (mail merge) functionality

	When your cuda installation stops working (on DEBIAN)

	Set dirs to 755 and files to 644

	Autocropping all images in folder

	How to deploy django application on debian server (UWSGI version)

	Compress a dir to tar.xz

	Connecting remote display (projector) to i3

	CGI on Nginx or how to run man2html on debian

	New Java Features

	How to disable subpixel rendering in Jetbrains products

	Linux dynamically assigned ports

	Asyncio servers in Python

	How to discard connection in a fast way

	Some remarks about databases

	MVCC in postgresql

	Should you use BRTFS for your laptop?

	How to deploy django application on debian server (UWSGI version)

	How to encrypt a usb drive using cryptsetup

	Disk performance

Comments:

	If you have any comments please send me an e-mail to jacekfoo@gmail.com.

Indices and tables

	Index

	Module Index

	Search Page

Attention: This blog has moved

I have moved this blog to a new home [http://blog.askesis.pl/category/developement.html].

Most of valuable content was moved there, so bookmark new site.

How to use pythonbrew and virtualenv

Warning

This is outdated and not longer revelant.

In most of my projects I use virtualenvs and install dependencies by pip, well
it’s nothing special, since virtualenvs have become mostly standard in python
developement.

But since among my colleagues I’m sort of early-adopter, and I find myself
explaining this again and again, I figured that I’ll write this article.

What is a python virtual environment

Virtual environment is a way to manage python interpreter and associated
installed packages. Generaly you use separate virtualenvs for all your
projects, in which case all these projects can depend on different versions
of libraries.

Advantages of using virtualenv

	Projects using different virtualenvs can use different versions of libraries.

	To install a library inside virtualenv you don’t need to have root privelages,
which is good even if you are root, because packages installed via pip
shouldn’t be trusted.

Installing virtualenv

Normally you install virtualenv using your system package manager.

Using virtualenv

virtualenv foo # create virtualenv in foo subfolder of local folder
New python executable in foo/bin/python
Installing distribute (..) done.
Installing pip...............done.

source foo/bin/activate # Activate the virtualenv

pip install django #install packages
Downloading/unpacking django
 Running setup.py egg_info for package django

 warning: no previously-included files matching '__pycache__' found under directory '*'
 warning: no previously-included files matching '*.py[co]' found under directory '*'
Installing collected packages: django
 Running setup.py install for django
 changing mode of build/scripts-2.7/django-admin.py from 644 to 755

 warning: no previously-included files matching '__pycache__' found under directory '*'
 warning: no previously-included files matching '*.py[co]' found under directory '*'
 changing mode of /tmp/foo/bin/django-admin.py to 755
Successfully installed django
Cleaning up...

python -c 'import django' #Verify django is installed

deactivate # turn off the virtualenv

python -c 'import django' # See that django was installed locally only!
Traceback (most recent call last):
 File "<string>", line 1, in <module>
ImportError: No module named django

Used commands

	virtualenv path

	creates virtualenv in specified path. Interesting options include:

	virtualenv –python=python2.5 creates virtualenv using specified
interpreter

	virtuaelnv –system-site-packages allows virtualenv to use packages
installed systemwide (it is nice since some packages can’t be installed
easily via pip).

	source path/bin/activate

	Enables virtualenv in current console

	pip install packagename

	installs package inside virtualenv (if it was activated)

	deactivate

	disables virtualenv in current console

Pip cache trick

When using virtualenvs you’ll find that installing packages via pip can be
painfully slow. You can instruct pip to use cache for downloaded packages
by adding following line to your .bashrc file.

export PIP_DOWNLOAD_CACHE=$HOME/.pipcache

Using pythonbrew

Virtual enviorment borrows one of your system interpreters, pythonbrew takes
it step further: it downloads and compiles your own python interpreter (and
has integrated support for virtualenvs.

Installing pythonbrew

Dont use instructions from pythonbrew repository, as they basically tell you:
‘download file via http and execute it in bash` (which is very insecure).

Just clone repository stored in github at https://github.com/utahta/pythonbrew
and execute install_pythonbrew.py script.

Then as instructed paste following into bashrc file:

[[-s "$HOME/.pythonbrew/etc/bashrc"]] && source "$HOME/.pythonbrew/etc/bashrc"

Using pythonbrew

	pythonbrew install 2.7.1

	Installs python 2.7.1 into pythonbrew

	pythonbrew use 2.7.1

	Use installed python 2.7.1 in current console.

	pythonbrew venv create name -p 2.7.1

	Create virtualenv named name for python interpreter version 2.7.1

	pythonbrew venv use name -p 2.7.1

	Activate virtualenv named name for python interpreter version 2.7.1

How to use Libre Office serial document (mail merge) functionality

Libre Officess mailmerge functionality is a nice feature that allows
you to create any kind of serial document, while all documentation
seems to indicate that it is only usable for creating e-mails.

I used this tutorial [http://davidmburke.com/2011/08/10/mail-merge-in-libreoffice/]
(it has nice screenshots and so on).

So anyways steps are as follows:

Create data source

Create a data source, this can be:

	A Libre Office Base database (or any database)

	A csv file (remember to have header row).

	An Libre Office Spreadsheet file (also add a header row)

Create a document template

Write the text

Attach database to the document

In writer Edit -> Exchange Database -> Browse -> Select your database file.

In writer View -> Datasources, then select your database file again.

You should see table contents.

Add fields to the document

Now you should be able to Drag and Drop fields (columns) from the table
to the document.

Create serialized documents

Mail Merge Wizard or click the envelope icon in data sources.
This stuff is mostly stupid and deals with preformatted address blocks, etc.
I ve never used it.

	Select starting Document: Select current document.

	Select document type: Select letter

	Insert address block: Uncheck all checkboxes.

	Create salutation: Uncheck all checkboxes.

When your cuda installation stops working (on DEBIAN)

There can be many signs for this error:

deviceQuery returns:

cudaGetDeviceCount returned 38-> no CUDA-capable device is detected

or you get:

no CUDA-capable device is detected

In my case it was version mismatch between installed nvidia kernel module
and libcuda1 library.

Note

Normally this module is installed via DKMS so kernel module version
should match version of nvidia-kernel-dkms, but this is not always
the case…

To check version of installed kernell module:

sudo modinfo nvidia-current | grep version

For now it should be 319.xxx. If it has version mismatch libcuda1
you have source of your errors (yay!).

Set dirs to 755 and files to 644

So I dont forget, if you want to share a directory structure with people
you can change permissions in following way:

find dir -type d -exec chmod 755 {} \;
find dir -type f -exec chmod 644 {} \;

In this way others will be able to enter any directory and won’t be able to
execuye files.

Autocropping all images in folder

Another piece of code I’m putting here for posteriority. Anyways, let’s say
I have couple hundred imahes in folder (autogenerated) and I need to
crop them automatically (remove extra background).

Here is a quic command that does the trick:

mogrify -trim +repage *.png

This comes with imagemagic suite.

How to deploy django application on debian server (UWSGI version)

Install proper version of python

On debian I’d discourage using system python for deployment — mostly
becaluse they tend to upgrade minor python versions without notice,
which breaks C ABI in installed virtualenvs.

So either roll your own deb files that install pythons somewhere in
/usr/local or compile python on server (if you frown on having
developement tools on your server roll debs).

Pythonz [https://github.com/saghul/pythonz] is a nice tool to compile
(and manage) many versions of python.

Install proper version of virtualenv

Note

This is more-or less irrevelant as Python (from version 3.4 onwards)
has it’s own built-in virtualenv tool, so if you use non-system one
it’ll have its own virtualenv.

Debian comes with ancient python/virtualenv version, and (at least on
testing) it often breaks this install. If you install virtualenv locally
it’ll be much more stable.

To install virtualenv locally just download virtualenv [https://pypi.python.org/packages/source/v/virtualenv/], unpack package
and use virtualenv.py.

This hsa the added benefit that you can have two versions of virtualenv
one for python2 and one for python3.

Install your application into virtualenv

You know how to do that don’t you?

Now you can tests whether your setup is correct, just run

./manage.py runserver

and see if you can connect to your application.

Install uwsgi into your virtualenv

Install uwsgi into your virtualenv from pip. Now you can run
your application using uwsgi:

uwsgi --http :8000 --module webapp.wsgi

I strongly discourage you from using uwsgi bundled with system.

Use supervisord to launch your applicaiton

You’ll need to run your application on system start, simplest way is to
use supervisord (you can install it via aptitude).

First create a script that will:

	Source virtualenv

	cd to your app directory

	run uwsgi.

Something along the lines:

#!/bin/bash
export HOME=/home/user
source $HOME/venv/bin/activate
cd $HOME/webapp
uwsgi --socket :8000 --module webapp.wsgi
exit $?

Notice that --http turned into --socket. Now uwsgi will
speak uwsgi protocol (which should be faster than http).

Then add configuration to supervisord. All services are defined as *conf files
(in ini format) inside /etc/supervisor/conf.d.

Create file containing something like:

[program:webapp]
command=/home/webapp/webapp.sh
autostart=true
autorestart=true
stderr_logfile=/var/log/webapp.err.log
stdout_logfile=/var/log/webapp.out.log
user=webapp

For all configuration options see the documentation [http://supervisord.org/configuration.html#programx-section].

Now after calling: service supervisor restart your django application
should be running.

Connect uwsgi and nginx

Note

This part is more or less ripoff from: http://uwsgi-docs.readthedocs.org/en/latest/tutorials/Django_and_nginx.html

Add following sections to nginx configuration:

upstream django {
 # server unix:///path/to/your/mysite/mysite.sock; # for a file socket
 server 127.0.0.1:8000; # for a web port socket (we'll use this first)
}

configuration of the server
server {
 # the port your site will be served on
 listen 80;
 # the domain name it will serve for
 server_name .example.com; # substitute your machine's IP address or FQDN
 charset utf-8;

 # max upload size
 client_max_body_size 75M; # adjust to taste

 # Finally, send all non-media requests to the Django server.
 location / {
 uwsgi_pass django;
 include /path/to/your/mysite/uwsgi_params; # the uwsgi_params file you installed
 }
}

Now you should see something on your server port 80. To finalize our setup
we need to create static and media directories.

Connect ngingx and uwsgi via linux file sockets

Because of many (peformance, safety) reasons it is better to connect
nginx with uwsgi via linux domain sockets.

First replace uwsgi call with something like that:

uwsgi --module webapp.wsgi --socket $HOME/sock/webapp.sock --chown-socket=webapp-user:www-data --chmod-socket=660

This does the following: creates a socket in $HOME/sock/webapp.sock,
sets its group ownership to www-data (which is user/group used by
both nginx and apache on default debian configuration).

Note

Linux file sockets use normal file permissions, so nginx has to
have read-write access to it.

Then replace:

upstream django {
 server 127.0.0.1:8001; # for a web port socket (we'll use this first)
}

with:

upstream django {
 server unix:///path/to/your/mysite/webapp.sock; # for a file socket
}

Update media and static root

Update settings py

You’ll need to update STATIC_ROOT, STATIC_URL,
MEDIA_ROOT, MEDIA_URL settings of youe app.

Something along the lines:

MEDIA_ROOT = '/var/drigan-media'
MEDIA_URL = '/media/'
STATIC_ROOT = '/var/drigan-static'
STATIC_URL = '/static/'

Update nginx

location /media {
 alias /path/to/your/mysite/media; # your Django project's media files - amend as required
}

location /static {
 alias /path/to/your/mysite/static; # your Django project's static files - amend as required
}

Tweak uwsgi so it scales

You might want tweak uwsgi so it launches more processes/workers, but
this well outside scope of this tutorial.

Compress a dir to tar.xz

Everyone is using tar.gz and tar.bz2 formats,
and these compression algorithms (while stable and installed everywhere)
are definetely not state-of-the-art.

Anyways most modern systems have much better compression ratios
(or much less compression/decompression overhead). Namely
xz (better ration) lzo (much better resource usage).

Anyways since I allways forget syntax to do compression here is
proper command, but today I found this nice tar switch -a
which means: “Try to guess compression format from file extension”,
so:

tar -caf foo.tar.xz data

will compress to xz, while

tar -caf foo.tar.lzo data

will compress to lzo. At least tar has sane API.

This is nice, but sometimes you’ll want to tweak compression ratio
for used compressor — in this case just use pipes. If you pass
- (if anything else is non-obvious just use man).

tar -c data - | xz -9c > data2.tar.xz

Connecting remote display (projector) to i3

It turns out to be suprisingly easy randr and i3 are integrated well
enough.

I have decided that I’ll add a workspace dedicated for projector.

i3.config snippet:

switch to workspace
bindsym $mod+p workspace 11

bindsym $mod+Shift+p move container to workspace 11

workspace 11 output VGA-1

To enable display issue:

xrandr --output VGA-1 --auto --right-of LVDS-1

To disable:

xrandr --output VGA-1 --off

CGI on Nginx or how to run man2html on debian

I don’t enjoy reading manpages, man has old clunky interface, however do
enjoy reading documentation in html, some good people developen man2html
tool that is a CGI script that serves man pages in a browser.

This is why in 2015 year I spend part of an evening trying to configure
modern web server to run CGI scripts. This might not be a suprise, that
nginx doesn’t serve CGI by default. It can serve FastCGI, which is a
streamlied version of CGI, that unfortunately is incompatible with plain
old CGI scripts.

However there were some other good people that wrote fcgiwrap, which is a
a wrapper that talks FCGI protocol, and then launches plain old cgi scripts.

So to launch man2html on Debian, you’ll need to:

	Install required software: aptitude install man2html nginx-full fcgiwrap

	There is a very good example fcgi config at
/usr/share/doc/fcgiwrap/examples/nginx.conf, so just copy it to: /etc/nginx/fcgiwrap.conf

	JUst include /etc/nginx/fcgiwrap.conf in your server config.

New Java Features

I decided to refresh my Java knowledge (last version I used was java 1.6), and
because I learn by coding (much better than I learn by reading) here are code
samples I prepared.

Note

This might be updated.

Java 1.7

Note

All examples were actually made on Java 1.8 JVM.

I used this [http://radar.oreilly.com/2011/09/java7-features.html] as
a reference list of changes (
Oracle comparison
is way to comprehensive).

java.nio.path package

Java File class is awful, but a very nice api was introduced in this
version of Java.

Package java.nio.path has a very nice tutorial by Oracle [https://docs.oracle.com/javase/tutorial/essential/io/fileio.html], so
I won’t describe it here.

Here is my (very simple) example, it works similarly to
Disk Usage Analyzer [https://en.wikipedia.org/wiki/Disk_Usage_Analyzer].
or du command on Linux, that is: it summarizes disk usage for a folder.

To do this I just needed to implement a FileVisitor instance, and then
pass it to Files.walkFileTree.

Code Highlights

Most of the logic is in Visitor that subclasses FileVisitor, this
class is used to traverse whole directory tree. Inside this instance we keep
track of where in the directory tree we are, by using a stack.

Queue<Long> fileSizes = Collections.asLifoQueue(new ArrayDeque<>());

Each entry in the
stack corresponds to a parent directory of currently processed path, and each
contains a total size of that directory.

To add size of current object to size of the parent following code is used:

private void pushSize(long size){
 long lastSize = fileSizes.poll();
 lastSize+=size;
 fileSizes.add(lastSize);
}

@Override
public FileVisitResult preVisitDirectory(Path dir, BasicFileAttributes attrs) throws IOException {
 fileSizes.add(0L);
 return FileVisitResult.CONTINUE;
}

@Override
public FileVisitResult postVisitDirectory(Path dir, IOException exc) throws IOException {
 long dirSize = fileSizes.poll();
 pushSize(dirSize);
 if (maxDepthToDisplay<0 || maxDepthToDisplay >= fileSizes.size()) {
 System.out.println(level(fileSizes.size()) + dir + " " + humanReadableByteCount(dirSize, true));
 }
 return FileVisitResult.CONTINUE;
}

@Override
public FileVisitResult visitFile(Path file, BasicFileAttributes attrs) throws IOException {
 if (Files.isRegularFile(file)) {
 pushSize(Files.size(file));
 }
 return FileVisitResult.CONTINUE;
}

@Override
public FileVisitResult visitFileFailed(Path file, IOException exc) throws IOException {
 return FileVisitResult.CONTINUE;
}

Complete example

import java.io.IOException;
import java.nio.file.*;
import java.nio.file.attribute.BasicFileAttributes;
import java.util.ArrayDeque;
import java.util.Collections;
import java.util.Queue;

public class PathExamples {

 private static class Visitor extends SimpleFileVisitor<Path>{

 long maxDepthToDisplay;

 Queue<Long> fileSizes = Collections.asLifoQueue(new ArrayDeque<>());

 protected Visitor(long maxDepthToDisplay) {
 super();
 this.maxDepthToDisplay = maxDepthToDisplay;
 fileSizes.add(0L);
 }

 private void pushSize(long size){
 long lastSize = fileSizes.poll();
 lastSize+=size;
 fileSizes.add(lastSize);
 }

 private String level(int depth){
 StringBuilder sbr = new StringBuilder();
 for (int ii = 0; ii < depth; ii++) {
 sbr.append(" ");
 }
 return sbr.toString();
 }

 /**
 * http://stackoverflow.com/a/3758880
 */
 public static String humanReadableByteCount(long bytes, boolean si) {
 int unit = si ? 1000 : 1024;
 if (bytes < unit) return bytes + " B";
 int exp = (int) (Math.log(bytes) / Math.log(unit));
 String pre = (si ? "kMGTPE" : "KMGTPE").charAt(exp-1) + (si ? "" : "i");
 return String.format("%.1f %sB", bytes / Math.pow(unit, exp), pre);
 }

 @Override
 public FileVisitResult preVisitDirectory(Path dir, BasicFileAttributes attrs) throws IOException {
 fileSizes.add(0L);
 return FileVisitResult.CONTINUE;
 }

 @Override
 public FileVisitResult visitFileFailed(Path file, IOException exc) throws IOException {
 return FileVisitResult.CONTINUE;
 }

 @Override
 public FileVisitResult postVisitDirectory(Path dir, IOException exc) throws IOException {
 long dirSize = fileSizes.poll();
 pushSize(dirSize);
 if (maxDepthToDisplay<0 || maxDepthToDisplay >= fileSizes.size()) {
 System.out.println(level(fileSizes.size()) + dir + " " + humanReadableByteCount(dirSize, true));
 }
 return FileVisitResult.CONTINUE;
 }

 @Override
 public FileVisitResult visitFile(Path file, BasicFileAttributes attrs) throws IOException {
 if (Files.isRegularFile(file)) {
 pushSize(Files.size(file));
 }
 return FileVisitResult.CONTINUE;
 }
 }

 public static void main(String[] args) throws IOException {
 Path path = Paths.get(args[0]);
 Files.walkFileTree(path, new Visitor(3));

 }
}

Fork Join Framework

Java 1.7 has very nice Fork-Join Framework, that allows one to dynamically split
between cores, but here is the catch: we don’t know the amount of work needed
upfront.

I have decided to try this framework, to (once again) summarize size of
a directory tree.

This framework is nicely explained in the tutorials [https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html].

Overall I’m surprised with the performance of both naive and parralel
implementation, naive version takes 6 seconds (when ran on my 150GB home directory),
while parralel takes 3sec.

Code Highlights

Task result is a POJO object, containing path, it’s size, information whether
this path is a directory, and sub directories (if any). Here is the definition:

private static class WalkFileResult{
 public final Path dirPath;
 public final boolean isDir;
 public final long dirSize;
 public final List<WalkFileResult> subdirs;

 public WalkFileResult(Path dirPath, long dirSize) {
 this(dirPath, dirSize, Collections.emptyList());
 }

 public WalkFileResult(Path dirPath, long dirSize, List<WalkFileResult> subdirs) {
 super();
 this.dirPath=dirPath;
 this.dirSize=dirSize;
 this.isDir=Files.isDirectory(dirPath);
 this.subdirs=subdirs;
 }
 }

Single task has following logic:

	If we are looking at a file, calculate file size and return it.

	If we are looking at a directory, create task for each child of the directory,
execute these tasks in parrarel and then calculate the size.

In Java it is:

@Override
protected WalkFileResult compute() {
 try {
 if (Files.isRegularFile(currentPath)) {
 return new WalkFileResult(currentPath, Files.size(currentPath));
 } else if(Files.isDirectory(currentPath)) {
 List<WalkFileTask> subTasks = getSubtasks();
 return joinOnSubtasks(subTasks);
 }
 }catch (IOException | InterruptedException e){
 throw new RuntimeException(e);
 }catch (ExecutionException e){
 throw new RuntimeException(e.getCause());
 }
 return new WalkFileResult(currentPath, 0L);
}

 private List<WalkFileTask> getSubtasks() throws IOException{
 // This visitor just returns immediate children of current path
 Visitor v = new Visitor(currentPath);
 Files.walkFileTree(currentPath, v);
 return v.subtasks;
 }

 private WalkFileResult joinOnSubtasks(List<WalkFileTask> subTasks) throws ExecutionException, InterruptedException {
 long size = 0;
 List<WalkFileResult> subDirs = new ArrayList<>();
 for (WalkFileTask res: invokeAll(subTasks)){
 WalkFileResult wfr = res.get();
 size+=wfr.dirSize;
 if (wfr.isDir){
 subDirs.add(wfr);
 }
 }
 return new WalkFileResult(currentPath, size, subDirs);
 }

Complete example

package examples;

import javax.sound.midi.SysexMessage;
import java.io.IOException;
import java.nio.file.*;
import java.nio.file.attribute.BasicFileAttributes;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.ForkJoinTask;
import java.util.concurrent.RecursiveTask;

public class ForkJoinPath{

 private static class WalkFileResult{
 public final Path dirPath;
 public final boolean isDir;
 public final long dirSize;
 public final List<WalkFileResult> subdirs;

 public WalkFileResult(Path dirPath, long dirSize) {
 this(dirPath, dirSize, Collections.emptyList());
 }

 public WalkFileResult(Path dirPath, long dirSize, List<WalkFileResult> subdirs) {
 super();
 this.dirPath=dirPath;
 this.dirSize=dirSize;
 this.isDir=Files.isDirectory(dirPath);
 this.subdirs=subdirs;
 }
 }

 private static class WalkFileTask extends RecursiveTask<WalkFileResult>{

 private static class Visitor extends SimpleFileVisitor<Path>{

 public final Path root;

 public List<WalkFileTask> subtasks = new ArrayList<>();

 protected Visitor(Path root) {
 super();
 this.root = root;
 }

 @Override
 public FileVisitResult preVisitDirectory(Path dir, BasicFileAttributes attrs) throws IOException {
 if(Files.isSameFile(dir, root)){
 return FileVisitResult.CONTINUE;
 }
 if (Files.isReadable(dir)) {
 subtasks.add(new WalkFileTask(dir));
 }
 return FileVisitResult.SKIP_SUBTREE;
 }

 @Override
 public FileVisitResult visitFile(Path file, BasicFileAttributes attrs) throws IOException {
 if (Files.isReadable(file) && Files.isRegularFile(file)) {
 subtasks.add(new WalkFileTask(file));
 }
 return FileVisitResult.CONTINUE;
 }

 @Override
 public FileVisitResult visitFileFailed(Path file, IOException exc) throws IOException {
 return FileVisitResult.CONTINUE;
 }
 }

 private final Path currentPath;

 public WalkFileTask(Path currentPath) {
 super();
 this.currentPath=currentPath;
 }

 private List<WalkFileTask> getSubtasks() throws IOException{
 // This visitor just returns immediate children of current path
 Visitor v = new Visitor(currentPath);
 Files.walkFileTree(currentPath, v);
 return v.subtasks;
 }

 private WalkFileResult joinOnSubtasks(List<WalkFileTask> subTasks) throws ExecutionException, InterruptedException {
 long size = 0;
 List<WalkFileResult> subDirs = new ArrayList<>();
 for (WalkFileTask res: invokeAll(subTasks)){
 WalkFileResult wfr = res.get();
 size+=wfr.dirSize;
 if (wfr.isDir){
 subDirs.add(wfr);
 }
 }
 return new WalkFileResult(currentPath, size, subDirs);
 }

 @Override
 protected WalkFileResult compute() {
 try {
 if (Files.isRegularFile(currentPath)) {
 return new WalkFileResult(currentPath, Files.size(currentPath));
 } else if(Files.isDirectory(currentPath)) {
 List<WalkFileTask> subTasks = getSubtasks();
 return joinOnSubtasks(subTasks);
 }
 }catch (IOException | InterruptedException e){
 throw new RuntimeException(e);
 }catch (ExecutionException e){
 throw new RuntimeException(e.getCause());
 }
 return new WalkFileResult(currentPath, 0L);
 }
 }

 private static String level(int depth){
 StringBuilder sbr = new StringBuilder();
 for (int ii = 0; ii < depth; ii++) {
 sbr.append(" ");
 }
 return sbr.toString();
 }

 /**
 * http://stackoverflow.com/a/3758880
 */
 public static String humanReadableByteCount(long bytes, boolean si) {
 int unit = si ? 1000 : 1024;
 if (bytes < unit) return bytes + " B";
 int exp = (int) (Math.log(bytes) / Math.log(unit));
 String pre = (si ? "kMGTPE" : "KMGTPE").charAt(exp-1) + (si ? "" : "i");
 return String.format("%.1f %sB", bytes / Math.pow(unit, exp), pre);
 }

 private static void printResult(WalkFileResult wfr, int depth){
 if (depth >= 3){
 return;
 }

 System.out.println(level(depth) + wfr.dirPath + " " + humanReadableByteCount(wfr.dirSize, false));
 for (WalkFileResult child: wfr.subdirs){
 printResult(child, depth+1);
 }

 }

 public static void main(String[] args) throws ExecutionException, InterruptedException {
 long start = System.nanoTime();
 Path path = Paths.get(args[0]);
 ForkJoinPool pool = new ForkJoinPool();
 WalkFileTask task = new WalkFileTask(path);
 pool.execute(task);

 printResult(task.get(), 0);
 double duration = (System.nanoTime() - start) * 1E-9;
 System.out.println(duration);

 }
}

Notable mentions

There is also very nice WatchService, that allows to monitor filesysem
for file changes.

Java 1.8

Streams and Lambdas

Third attempt to do the same task: to summarize size of
a directory tree.

This times using Streams and Lambdas. Solution is most concise, but
least readable IMO. Also, while other solutions transparently handle unreadable
directories, this one explodes with AccessDenied exception.

Code Highlights

Result POJO:

A function that can throw an exception:

@FunctionalInterface
public interface CheckedFunction<T, R> {
 R apply(T t) throws IOException;
}

A lambda that calculates file size:

CheckedFunction<Path, DirSize> mapper = (Path p) -> new DirSize(p,
 Files.walk(p).parallel()
 .filter(Files::isReadable)
 .mapToLong(StreamExamples::safeSize).sum());

A stream that walks over FS calculating size of each directory:

Files.walk(path, 3)
 .parallel().filter(Files::isDirectory).filter(Files::isReadable).map(
 (Path p) -> {
 try {
 return mapper.apply(p);
 } catch (IOException e) {
 return new DirSize(p, -1);
 }
 }).forEach(
 (DirSize d) ->
 System.out.println(d.path + " " + humanReadableByteCount(d.size, false)));

Complete example

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

/**
 * Created by jb on 12/3/15.
 */
public class StreamExamples {

 private static class DirSize{
 public final Path path;
 public final long size;

 public DirSize(Path path, long size) {
 this.path = path;
 this.size = size;
 }
 }

 @FunctionalInterface
 public interface CheckedFunction<T, R> {
 R apply(T t) throws IOException;
 }

 public static long safeSize(Path p){
 try {
 return Files.size(p);
 } catch (IOException e) {
 return 0;
 }

 }

 public static String humanReadableByteCount(long bytes, boolean si) {
 int unit = si ? 1000 : 1024;
 if (bytes < unit) return bytes + " B";
 int exp = (int) (Math.log(bytes) / Math.log(unit));
 String pre = (si ? "kMGTPE" : "KMGTPE").charAt(exp-1) + (si ? "" : "i");
 return String.format("%.1f %sB", bytes / Math.pow(unit, exp), pre);
 }

 public static void main(String[] args) throws IOException {
 long start = System.nanoTime();
 Path path = Paths.get(args[0]);

 CheckedFunction<Path, DirSize> mapper = (Path p) -> new DirSize(p,
 Files.walk(p, Integer.MAX_VALUE).parallel().filter(Files::isReadable).mapToLong(StreamExamples::safeSize).sum());

 Files.walk(path, 3)
 .parallel().filter(Files::isDirectory).filter(Files::isReadable).map(
 (Path p) -> {
 try {
 return mapper.apply(p);
 } catch (IOException e) {
 return new DirSize(p, -1);
 }
 }).forEach((DirSize d) -> System.out.println(d.path + " " + humanReadableByteCount(d.size, false)));

 double duration = (System.nanoTime() - start) * 1E-9;
 System.out.println(duration);
 }

}

How to disable subpixel rendering in Jetbrains products

If you want to disable subpixel rendering (another term is font anitaliasing)
in any JetBrains product (like: Idea, Pycharm and so on), you need to:

	Go to bin dir of install folder, find file that ends with *vmoptions
(idea.vmoptions, pycharm.vmoptions).

	There should be a line
-Dawt.useSystemAAFontSettings=lcd in this file, delete this line.

	Add line: -Dprism.lcdtext=false.

These two lines define properties passed to Java Virtual Machine that control
antialiasing, both of them are undocumented, so they might not work in future
JVM releases (I tested on 1.8.51). These JVM settings seem to clash with
either JetBrains settings (that override these) and Gnome settings, so
disabling them makes sense.

Linux dynamically assigned ports

So you want to assign your application a high port number, maybe
you do some testing (and you’ll launch many instances of servers), maybe you
want to set some service on unusual port (which is ok in some cases).

What you don’t want is your selected port to clash with the range of ports
that are automatically assigned to outgoing connections. This range is
sadly OS dependent, IANA defines it as: 49152–65535, however linux
chooses different range, that can be read by: ``cat /proc/sys/net/ipv4/ip_local_port_range ``.

For more information see this SO post [http://stackoverflow.com/a/924337/7918].

Asyncio servers in Python

From what I read: “normal” architecture for a web-server is that one assings
single thread to a client, this is mostly OK, but after certain number of clients
your performance drops (because of thread memory overhead, context switching costs,
and other things). Specific limit is hart to guess, and depends on OS, app,
hardware and so on.

Asynchronous servers were supposedly a solution to this problem, but I didn’t
really believe this. From what I understood you could always buy more
frontend boxes and scale it this way.

But today I actually written a async server, this server is very simple,
has no error control (it took me less than an hour, including reading manuals),
protocol is very simple:

	Protocol is line based

	When any client sends a line of text to the server

	This line is sent to every another client.

It was written in Python 3.5, server uses
PEP-492 [https://www.python.org/dev/peps/pep-0492] and the asyncio
library. Go ahead and read this PEP, there is even a working example
(that I based upon).

I didn’t do extensive tests, but it seems that this server handles 4000
connections easily on single core, throughput is about 40K messages
per second (still on single core).

Note

I wouldn’t rely on these numbers much, to do a proper tests I would have to:

	Add error handling to the server.

	Change the protocol to acknowledge results.

	Write some proper tests.

Tests are based on running 4 processes each spawning 1000 sockets to the server,
and then writing one message per 100ms in yet another thread. Results were
observed by looking at the output :)

Server works as follows:

	Keeps a set of all connections (sockets in essence)

	Each relieved line is sent to all sockets

Server code is here:

-*- coding: utf-8 -*-

import asyncio
import threading
from asyncio.streams import StreamReader, StreamWriter

import time

from multiprocessing import Process, Lock, Condition

class AsynChat(object):

 def __init__(self, port, client_may_end_connection=False):
 self.clients = set()
 self.port = port
 self.client_may_end_connection=client_may_end_connection
 self.__loop = None

 async def handle_connection(self, reader:StreamReader, writer:StreamWriter):
 self.clients.add(writer)
 while True:
 data = await reader.readline()
 print(data.strip())
 if self.client_may_end_connection and data.strip() == b'END':
 print("STOP")
 self.__loop.stop()
 for w in self.clients:
 if w == writer:
 continue
 w.write(data)
 await w.drain()
 if not data:
 if writer in self.clients:
 self.clients.remove(writer)
 try:
 writer.write_eof()
 except OSError:
 pass # Sometimes it explodes if socket was closed very soon, didn't investigate
 return

 async def echo_server(self):
 await asyncio.start_server(self.handle_connection, 'localhost', self.port)

 @classmethod
 def run_in_process(cls, *args, **kwargs) -> Process:
 c = Condition(Lock())
 def build_and_run(*args, **kwargs):
 ac = cls(*args, **kwargs)
 ac.run_loop(c)

 p = Process(target=build_and_run, args=args, kwargs=kwargs)
 p.start()
 with c:
 c.wait()

 return p

 def run_loop(self, c:Condition=None):
 self.__started = True
 self.__loop = asyncio.get_event_loop()
 self.__loop.run_until_complete(self.echo_server())

 def notif():
 with c:
 c.notify()

 try:
 if c:
 self.__loop.call_soon(notif)
 self.__loop.run_forever()
 finally:
 self.__loop.close()

if __name__ == "__main__":
 a = AsynChat(1234, True)
 a.run_loop()

How to discard connection in a fast way

Just a quick note, here is how to drop a TCP connection fast:

	Client sends SYN packet

	Server responds with RST packet, which promptly kills the connection
without any state.

Some remarks about databases

Note

I was refreshing my knowledge on the broad subject of databases, mostly by
reading Wikipedia articles, which resulted (apart from notes attached here)
in creating this wikipedia book [https://en.wikipedia.org/wiki/Book:Databases_//_Theoretical_Introduction]
(in case some future problems with Wikipedia you can try version hosted here).

Read anomalies Anomalies

What can happen if your database doesn’t serialize transactions properly:

	Dirty read

	When one transaction sees uncommitted data of another one

Short example:

We have two transactions T1 and T2.

	T1 reads value of a row R

	T2 writes new value of row R

	T1 sees a change in row value

	Non-Repeatable Read

	When value of a row changes during a transaction.

Short example:

We have two transactions T1 and T2.

	T1 reads value of a row R

	T2 writes new value of row R

	T2 commits <- Difference from Dirty Read

	T1 sees a change in row calue

	Phantom read

	When a result of query changes during the transaction.

Note

Database without Non-Repeatable Reads cam still suffer from phantom reads,
non-repeatable reads apply when other transaction updates or deletes records
while phantom also apply to inserted rows.

Short example:

	T1 executes a query: SELECT AVG(value) FROM account WHERE ...GROUP BY ...

	T2 executes: INSERT INTO account

	T2 commits

	T1 executes a query: SELECT AVG(value) FROM account WHERE ...GROUP BY ...
and gets different results.

	Write Skew

	This is an anomaly for MVCC databases, which occours each transaction works on
a snapshot of database, and don’t see changes done by each other.

Note

This anomaly is not defined in SQL standard, as SQL standard had locking
databases in mind.

Short example:

Let’s consider a banking application, with following constraint: balance of
account must be non-negative, but we don’t store it explicitly, it is just
calculated by SELECT SUM(t.value) FOR account INNER JOIN transaction as t ON ...

	At the start of the transaction balance of account A is 100PLN

	Transaction T1 starts

	Transaction T2 starts

	Transaction T1 adds a transaction for A that withdrawns 100PLN (which is valid
as constraint is held)

	T1 Commits

	Transaction T2 does the same (which still is valid as constraint is held inside
a snapshot for T2 — constraint is not held “outside of” this snapshot).

Note

Wikipedia says that you might resolve this issue by explicitly writing to
a dummy row just to force write-write confilct.

Transaction isolation Levels

	Serializable

	Highest transaction isolation. Transactions are executed as if they were
executed serially.

No read anomalies can occur.

In database that uses locks it requires to put locks on:

	Every row you write to

	Every row you read

	Range lock for every query (for example lock all records for which specified
condition is true).

These locks are held until the end of the transaction.

	Snapshot Isolation

	This transaction isolation level works as follows: Each transaction sees
database in a (consistent) state the database was at the beginning
of the transaction (with any changes it did).

This is very different from Serializable, as it allows “Write Skew” anomalies.

Note

This isolation level is not defined in SQL standard.

You can define Serializable isolation on top of Snapshot Isolation
relatively easy by:

	This can be done relatively easy by the DMBS, see this article:

Cahill, M. J., Röhm, U., & Fekete, A. D. (2009).
Serializable isolation for snapshot databases.
ACM Transactions on Database Systems, 34(4), 1–42.
doi:10.1145/1620585.1620587

	Writing proper code that introduces artificial write conflicts between data.

Note

These conflicts are artificial, because they exist only to introduce write
conflicts, which will abort transaction that tries to write to the
database as the second one.

	Repeatable Read

	This isolation level reading a row will always produce the same value,
even of these rows were changed by other transactions. However query results
are can change during the transaction (especially for aggregate queries).

In database that uses locks it requires to put locks on:

	Every row you write to

	Every row you read

These locks are held until the end of the transaction.

	Read Committed

	In this isolation level transaction doesn’t see changes made by another
uncommitted transactions, however it may see changes made by commited transactions.

In database that uses locks it requires to put locks on:

	Every row you write to

	Every row you read

Write locks are held until the end of the transaction, however read locks
are released after each select.

	Read Uncommitted

	In this level you can see uncommitted data sent by saved by other transactions.

Serializability

We have a some set of concurrent transactions, these transactions are serializable,
if one can produce a schedule containing these transactions executed serially
in some order.

Serializability is important because:

If DBMS checks if database is in a consistent state after each of the
transactions, and transactions are serializable — it means that the
database is in a consitent state after all transactions.

MVCC in postgresql

Note

This is based on my lecture on the databases, which (is still available
in Polish [http://db.fizyka.pw.edu.pl/~bzdak/bazy_danych_ed_20/wyklad10/wyk10.html#mvcc-w-postgresql])

There are two ways to implement proper transaction isolation:

	First is by using locking. In this padagrim whenever transaction reads data
a lock is issued, and any write to that data will wait until reading
transaction finishes (this might be simplified).

	Second is by using MVCC — that is multi version concurrency.
It works as follows: each transaction sees database in a state at the
time the transaction, so reads and writes don’t need to wait for each other
(there is a problem with write skew anomaly, which is solved by the postgresql
9.1 and newer [https://wiki.postgresql.org/wiki/SSI].

How does MVCC work

Start of the transaction

When transaction starts following things happen (or may happen depending
on isolation level):

	Transaction is assigned a txid a transaction ID, transaction id’s are
ordered 32 bit integers (that may wrap around at some point in time,
but Postgres handles it).

	txid``s of all committed transactions are stored (possibly in a more efficient
way than storing all ``txids)

Data constraints

Each row contains couple of magic columns:

	xmin

	This is the txid of transaction that inserted this row

	xmax

	This is the txid of transaction that deleted this column

	cmin, cmax

	Index of statement in transaction that added/deleted that row

Basic operations

	INSERT

	When a transaction inserts a row it xmin is set to txid of this transaction.

	DELETE

	When a transaction deletes a row it just sets xmax to it’s txid

	UPDATE

	Updates are replaced with a delete and insert pair.

Data visibility

Row is visible for transaction txid if (all statements must be true):

	It’s xmin < txid (row was inserted by a transaction before this one).

	Transaction xmin is commited (in case of Read Commited isolation level),
or xmin was commited before start of current transaction (other isolation
levels)

	It’s xmax is empty or xmax > txid (row was deleted by a transaction
that started after this one).

In case of transaction that issue multiple statements cmin, cmax are
used for example to have a cursor that consistently iterates over a table,
even if the same transaction alters the table.

VACUUM

Data can’t be deleted from disk immediately in databases using MVCC, because
ongoing transactions might not ‘see’ the delete, and still need to access
deleted row. Data can be deleted only after all transactions with txid lower
row’s than xmax have either committed or have been rolled back.

Postgresql does this (more or less) automatically, but you might call
VACUUM by hand if you need to reclaim space (this space will not necessarily
be freed to the OS, rather it will be accessible for new inserts).

Sources

	BRIUCE MOMJIAN MVCC Unmasked: http://momjian.us/main/writings/pgsql/mvcc.pdf
(I have also cached it locally, due to permissive CC license)

	Serializable Snapshot Isolation on Postgresql Wiki [https://wiki.postgresql.org/index.php?title=SSI&printable=yes],
(due to even more permissive license it is also cached locally.

	My old lectures: http://db.fizyka.pw.edu.pl/~bzdak/bazy_danych_ed_20/wyklad10/wyk10.html#mvcc-w-postgresq

	Wikibook I have collected [https://en.wikipedia.org/wiki/Book:Databases_//_Theoretical_Introduction]
(in case some future problems with Wikipedia you can try version hosted here).

Should you use BRTFS for your laptop?

TL; DR; Probably not.

Recently I re-installed by Debian desktop, and enabled full disk
encryption, (and LVM for that matter). I was also toying with the
idea of using BTRFS, which has many features I always wanted
to have, including:

	Fast fs-level compression

	Optional, out of write path, deduplication.

	Very nice features including super-easy resizing
(adding more GBs to your file system takes
seconds)

	Copy on write semantics

	File system snapshoting (said to be good for backups)

BTRFS is stable, yet I believe is unusable for a most of people.
If you are not a linux nerd, don’t try, if you are you might,
but remember:

	Do backups, you should always do backups, especially if you
use encrypted filesystems on ssd drives.

	Do yourself a favour and buy an USB stick, and burn there
a linux live-cd.

	BTRFS will suprise you.

Here are two nasty suprises I had.

BTRFS COW doesnt play well with some usage patterns

If you are a linux nerd, you probably have some virtual machines,
COW (copy on write) doesn’t play with them. Well everywhere
where you have large files that are written to often, it doesn’t
play well with COW.

COW can be disabled on directory level, do to this issue
chattr +C /dir command, this will disable COW for
everything under /dir. Keep in mind that it works
only on empty files and directories, turning off COW
on a file with data, has undefined behaviour, and
most often is bad. Turning off COW for directories with files
is safe, but existing files will have COW enabled.

In my case VirtualBox failed with very non-obvious errors,
before I disabled COW.

BTRFS needs garbage collection (or something similar)

Basically BTRFS kind-of lies to the OS when reporting free space.
You can have full filesystem and yet BTRFS will report 100GB
of free space. I don’t try to understand what it is,
BTRFS wiki says things like: “The primary purpose of the balance
feature is to spread block groups across all devices so they
match constraints defined by the respective profiles.”

Usable free space on your disk can be seen using btrfs fi show
Which will display: total system size, and how much space
is currently used by btrfs.

In my case:

btrfs fi show

Label: none uuid:
 Total devices 1 FS bytes used 613.29GiB
 devid 1 size 745.06GiB used 649.06GiB path /dev/mapper/

I have 745GB partition, of which 649GB is used by btrfs,
however, only 613 is used for files.

This can be fixed by issuing something like:

btrfs balance start -dusage=<magic number> / &

<<magic number> is a percentage value, and BTRFS will try to
"rebalance" only chunks filled in less than this <<magic number>>,
the bigger number you put there the longer will it take, and the
more space you’ll reclaim. You can start with percentage value
of used space you have on your drive.

How to deploy django application on debian server (UWSGI version)

Install proper version of python

On debian I’d discourage using system python for deployment — mostly
becaluse they tend to upgrade minor python versions without notice,
which sometimes breaks C ABI in installed virtualenvs.

So either roll your own deb files that install pythons somewhere in
/usr/local or compile python on server (if you frown on having
development tools on your server roll debs).

Note

For development environment Pythonz [https://github.com/saghul/pythonz]
is a nice tool to compile (and manage) many versions of python.

If you want deploy your server by hand just download and compile python.

If you are into automatic deployment (and you should be)

Assumptions about the system

I’ll assume that you will configure your system in following way:

	Django application will be using www-client user

	Code will be inside /home/www-client/repo

	There will be a django generated uwsgi file in /home/www-client/repo/webapp.uwsgi

	Virtualenv will be in /home/www-client/repo/venv.

Install your application into virtualenv

You know how to do that don’t you?

Now you can tests whether your setup is correct, just run

./manage.py runserver

and see if you can connect to your application.

Install uwsgi into your virtualenv

Install uwsgi into your virtualenv from pip. Now you can run
your application using uwsgi:

uwsgi --http :8000 --module webapp.wsgi

I strongly discourage you from using uwsgi bundled with system.

You can configure uwsgi using a variety of ways, most of which are better
than using a command line arguments :). For example you can create an ini file
named uwsgi.ini:

module=webapp.wsgi
pythonpath=/home/www-client/webapp
http=8000

And then start uwsgi using: uwsgi --ini uwsgi.ini.

Use systemd to launch your applicaiton

Now use systemd to launch the application.

Systemd is a very nice init system that is becoming a standard in most
recent distributions (it’s even on Debian stable).

If your distribution has no systemd you can use supervisord (which is
even on debian oldstable), tutorial to deploy django with it is here.

So create /home/webapp/uwsgi.ini file with following contents:

module=webapp.wsgi
http=8000
pythonpath=/home/www-client/repo

Create a webapp.service file and put it in /etc/systemd/system/,
file should have following contents:

[Unit]
Description=Description
After=syslog.target

[Install]
WantedBy=multi-user.target

[Service]
What process to start
ExecStart=/home/www-client/venv/bin/uwsgi --ini /home/www-client/uwsgi.ini
What user chown to
User=www-client
Working directory
WorkingDirectory=/home/www-client/webapp
Restart=always
Kill by SIGQUIT signal --- this is what asks wsgi to die nicely
KillSignal=SIGQUIT
Notify type, in this type uwsgi will inform systemd that it is ready to handle requests
Type=notify
StandardError=syslog
NotifyAccess=all

Then:

sudo systemctl --system enable webapp
sudo systemctl start webapp

Now you should have a working uwsgi configuration, which is reachable at localhost:8000.

Connect uwsgi and nginx

Note

This part is more or less ripoff from: http://uwsgi-docs.readthedocs.org/en/latest/tutorials/Django_and_nginx.html

In this part we will put uwsgi behind nginx server.

Add following sections to nginx configuration:

upstream django {
 # server unix:///path/to/your/mysite/mysite.sock; # for a file socket
 server 127.0.0.1:8000; # for a web port socket (we'll use this first)
}

configuration of the server
server {
 # the port your site will be served on
 listen 80;
 # the domain name it will serve for
 server_name .example.com; # substitute your machine's IP address or FQDN
 charset utf-8;

 # max upload size
 client_max_body_size 75M; # adjust to taste

 # Finally, send all non-media requests to the Django server.
 location / {
 uwsgi_pass django;
 include /etc/nginx/uwsgi_params; # the uwsgi_params file you installed
 }
}

Now you should see something on your server port 80. To finalize our setup
we need to create static and media directories.

Connect ngingx and uwsgi via linux file sockets

Because of many (peformance, safety) reasons it is better to connect
nginx with uwsgi via linux domain sockets.

First replace uwsgi.ini file with something like:

And also create /home/www-client/sock/.

This does the following: creates a socket in $HOME/sock/webapp.sock,
sets its group ownership to www-data (which is user/group used by
both nginx and apache on default debian configuration).

Note

Linux file sockets use normal file permissions, so nginx has to
have read-write access to it.

Then replace:

upstream django {
 server 127.0.0.1:8001; # for a web port socket (we'll use this first)
}

with:

upstream django {
 server unix:///path/to/your/mysite/webapp.sock; # for a file socket
}

Update media and static root

Now we’ll update settings so static media is served by nginx.

Update settings py

You’ll need to update STATIC_ROOT, STATIC_URL,
MEDIA_ROOT, MEDIA_URL settings of youe app.

Something along the lines:

MEDIA_ROOT = '/var/drigan-media'
MEDIA_URL = '/media/'
STATIC_ROOT = '/var/drigan-static'
STATIC_URL = '/static/'

Update nginx

location /media {
 alias /path/to/your/mysite/media; # your Django project's media files - amend as required
}

location /static {
 alias /path/to/your/mysite/static; # your Django project's static files - amend as required
}

Tweak uwsgi so it scales

You might want tweak uwsgi so it launches more processes/workers, but
this well outside scope of this tutorial.

How to encrypt a usb drive using cryptsetup

Actuall I didn’t manage to set up it using console cryptsetup commands,
however there is a very nice dommand gnome-disks (which comes in package
gnome-disk-utility) that does everything automatically!

Disk performance

I’m doing a small side project, that requires me to randomly query/update
about 1TB of data. Managing random access to this kind of data is non trivial.

Attempt 1 or the problem

So I took 2TB hard disk out of my drawer and tried to use it.

Lessons learned:

Lesson 1: Don’t use BTRFS for data volumes

Don’t use BTRFS for data volumes (at least not without serious tweaking:
for starters you need to disable COW for data volumes).

On the other hand: BTRFS is totally cool fs for daily use, and has native
support for compression and native out of band deduplication.

I decided to use xfs which is a nice tweakable file system.

Lesson 2: There are some kernel settings that require tweaking

Kernel is not really tweaked for serious disk IO initially.

Especially following settings are critical:

	/proc/sys/vm/dirty_ratio or /proc/sys/vm/dirty_bytes. Both control
maximal amount of dirty pages that system can hold. If any process dirties
more pages, writes will be stopped until enough bytes are written do disk
so we finish before the threshold.

If some process sends writes a lot of data, and then issues fsync system
may become unresponsive. (This is what inserting a lot of data into SQL
database does).

	/proc/sys/vm/dirty_background_bytes or /proc/sys/vm/dirty_background_ratio

If there are more dirty pages than this threshold system starts background
process to write some data to disk.

_ratio variables are older, and are mentioned everywhere. They basically mean
if more than N percent of RAM is used as dirty cache then flush.

_bytes variables were added “recently” and often they are not mentioned on
tutorials. They are easier to understand, and are a better fit for systems
with a lot of RAM. They just mean threshold in bytes.

Default values are ridiculously high on systems with a lot of RAM – as by default
_ratio variant is used with setting of about 10 od 20, which may mean that
your system will flush gigabytes of data on fsync.

This values should be much lower than defaults. You need to measure this
(this is one thing I learned much later)

Easiest way to set these variables is to add following to rc.local.

Lesson three: set noatime to your data partition

noatime is a mount option that disables last access time attribute on
files. However this attribute might be useful, it turns every file read into a
write (to update this attribute) which is a big no.

To do this add noatime to appropriate /etc/fstab entry:

/dev/mapper/.. /mount-point xfs defaults,noatime 0 0

Lesson four: Read a book

I recommend: PostgreSQL High Performance. If you know any books on tuning
IO devices I’d be happy to read them (so e-mail me)

Lesson five: IOPS is an important parameter

Iops stands for “IO Operations Per Second”, or “how many random reads” your
disk can make in a second.

Nice thing about SSD’s is that they mostly allow random access to data — that
is it doesn’t matter much whether you read one big continoous file or just
read random parts of said file.

HDD’s don’t have this property — if you read data sequentially you’ll have
much better read speeds (orders of magnitude better).

So for HDD’s IOPS are limiting factor in case of random access.

To see how much iops is your disk currently using install sysstat Debian
package and user iostat:

Device: tps kB_read/s kB_wrtn/s kB_read kB_wrtn
sdc 113.53

and tps is column you need.

Typical number of IOPS you can get from HDD is 15-50 for
5400 RPM disks, and 50-100 for 7200 RPM disks
(according to Wikipedia). iostat showed more IOPS for my 5400 RMP disk
which might be caused by on-disk cache.

Problem

I just didn’t get enough IOPS.

Non solutions

Use cloud

Easiest solution would be just do to what everybody does: “just put it in the
cloud”. The problem is it’s expensive, and I’m stingy. Probably there will be
no money from this project, and if I can just scrap it from parts that
lie in my drawer why spend money.

For now let’s ignore VM costs, and focus on the hardware:

	On AWS I could buy 1TB of SSD storage for 119$ a month “throughput optimized

HDD” for 50$. SSD would be way faster than my solution, and I believe
HDD’s would be slower.
* On Google Cloud both HDD and SSD would be faster than my solution as
google’s HDD’s are not that throughput oriented. SSDs cost 200$ and HDDs 50$.

If I add VM to this I get slightly about 200$ a month.

Note: I’m totally for using cloud for deploying your services, managing
hardware that has couple of nines availability is not trivial, and well worth
the price.

Just buy SSDs

Just buy SSD disks. This would work, but again: I’m stingy and 2 TB SSD disk
is about 850$ (and this is not one of my favourite makes).

If I was sure total data will be less than 1TB I’d probably buy 1TB SSD, but
prices of SSD’s skyrocket after 1 TB in size.

Attempt 2

I bought two 2TB 7400 RPM Western Digital hard disks. I’m a big fan od WD disks.

And I decided to just use them as some form of RAID-0. This way I’ll get
4TB of total storage with decent speeds (but if any drive dies I loose my data).

Lesson 0: Raid is not a backup

This is not really something I encountered right now, but I feel this can’t be
stressed enough.

Note

I also dislike using RAID controllers — as there is no such thing as
raid disk format and each manufacturer might make their own disk format,
which means that when controller dies your data might be hard to recover.

Lesson 1: Raid is everywhere

In linux at least you might get RAID or RAID-like behaviour on many different
levels:

	RAID controller

	Software RAID

	LVM

	Filesystems — this is totally cool that you can have native RAID-X in
your BTRFS system on file system level.

Lesson 2: LVM striping is cool

If you have more than single disk in your LVM volume group, you can use
striping — works more or less like RAID-0 but with some advantages:

	It’s easy to set up.

	You can easily create and delete volumes with and without striping.

	You don’t have this assumption that: “size of volume is lowest of the size of
physical volumes”.

Downside is that probably Raid is gives you better performance (at least
this is what I read on the Internet)!

Lesson 3: Stripe size matters

I basically created striped volume on two disks, and I got no performance
increase whatsoever. Synthetic tests showed performance decrease,
yes: two 7400RPM disks got slower than single 5400RPM disk.

Lesson 4: Measure performance

There are very nice performance tools. On I used was sysbench (it’s in
debian repositories).

My initial assumption is that I selected wrong stripe size. Stripe is amount
of contiguous data that LVM puts on a single disk,
next stripe is on next disk and so forth.

There is no “best” stripe size, I would suggest having a stripe larger than
your typical random read — so typical random read will not require coordinating
couple of disks.

Lesson 5: How to measure performance

Currently I did very simple benchmark:

	I created a volume with given stripe size

	I created a XFS filesystem with block size equal to stripe size (not sure
if this is good idea)

	Prepared sysbench by: sysbench fileio --file-total-size=128GB prepare

	Ran sysbench fileio --file-total-size=128GB --file-test-mode=rndrw --file-fsync-freq=10 --threads=8
for couple of block sizes (block size is how much data is read or written in
single batch)

If you can read python, here is script I used: :download:data/striped-benchmark.py.

My results were as follows:

	For larger block sizes bigger stripes gave me much more throughput.

	For smaller block sized bigger stripes were not that important.

Ultimately I decided I’ll use 64kb stripe size.

Right now I get about 100 IOPS for each drive and more than 100mb/s read and
write speeds from both drives (in my specific workload!).

Which probably is enough for time being, and I’m not sure I could get better
performance from two disks that costed less than 300$ (or 1000 złotys).

If I’ll do some tweaking I’ll let you know what and how I did it.

Index

Interesting projects ideas

Note

This is an ongoing work.

Create (or find usable) btrfs snapshot backup tool:
https://btrfs.wiki.kernel.org/index.php/Incremental_Backup .

Use git as deployment tool

Why to do this

Git people allways tell: “Don’t push non-bare repository, “It’s a terrible
idea!”. Reasons cited are:

	What if someting is accesing the code on the working copy, you’ll change
the code while program is running.

	What if code needs to be recompiled.

	What you’ll do if working copy has local changes?

	What you’ll do if the merge fails?

and so on.

However of these concerns only first one is applicable, and easily amended in
some deployments.

Note

Answers to these concerns:

What if someting is accesing the code on the working copy, you’ll change
the code while program is running.

This is a valid concern. In my case this was not a problem since — I
was the only user of the system and I knew when I could push changes.

	What if code needs to be recompiled.

	Not a problem in case of Python. Also performing some set-up tasks
(like updating requirements) can be done by hand if it occours rarely
enough.

Most of the scientific work I do is done in following way: code is developed
on my local computer (with some tests), but it is tested and ran on the cluster.

Often code developed on my laptop had some minor errors, so I had to synchronize
the code often.

My git flow was following:

	Commit on local computer

	Push changes

	SSH to remote maching

	Fetch changes

	Merge changes

And if anything was wrong I had to redo all these steps again. This is mind
numbing! Not to mention that it changed 10 sec. change-recompile-test cycle
to 1 minute: change-do-unrelated-stuff-recompile-test cycle.

It would be great if my git-flow would look like:

	Commit changes on local computer

	Changes magically are pushed and checked out on repote repository

Since some issues needed to be resolved on the cluster I sometimes did changes
on the remote repository and I didn’t want them to be lost, and since
using tools like rsync couldn’t easily guarantee that changes on the
server will not be overriden I didn’t want to use them.

How to do this

Anyways it turns out that creating git hooks that are reasonably safe is
quite easy.

So here is the logic:

	When I commit to local repository changes are automatically pushed to
remote one

	When remote repository gets update on checked-out branch changes
are merged and checked out. If error conditions occour abort merge.
Following error conditions can be detected:

	Working copy is dirty

	Merge is not fast forward

 How to be single developer

 Linux networking

Out of bound communication with VM

Before messing with routing tables you probably should set up access mechanism
that bypasses networking layer, as you will break it.

On Google compute engine you can get read and write access to serial ports
of your virtual machine. ``Documentation for the serial port is here
<https://cloud.google.com/compute/docs/instances/interacting-with-serial-console>``__.

Here is quick recap:

	Enable serial console by issuing: gcloud compute instances add-metadata [INSTANCE_NAME] --metadata=serial-port-enable=1;

	Then connect: gcloud compute connect-to-serial-port [INSTANCE_NAME];

	If you are asked for the password, you’ll need to connect via SSH and set up
password for your user manually.

Part 1: Use simple routing

You need two instances instance-c and instance-r. First one will be
a client, and second one will be a router.

Connect to both c and r. Connect to c using serial console.

Enable routing in r — by default linux hosts are not performing routing,
by: sudo sysctl -w net.ipv4.ip_forward=1.

Note

I guess that enabling routing on public IP is not smart thing to do,
we’ll disable it for any address but IP of instance-c and probably
we’ll be good.

Also whole configuration we do here is transient.

 _static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Root page of my blog

 		
 Attention: This blog has moved

 		
 How to use pythonbrew and virtualenv

 		
 What is a python virtual environment

 		
 Advantages of using virtualenv

 		
 Installing virtualenv

 		
 Using virtualenv

 		
 Pip cache trick

 		
 Using pythonbrew

 		
 Installing pythonbrew

 		
 Using pythonbrew

 		
 How to use Libre Office serial document (mail merge) functionality

 		
 Create data source

 		
 Create a document template

 		
 Attach database to the document

 		
 Add fields to the document

 		
 Create serialized documents

 		
 When your cuda installation stops working (on DEBIAN)

 		
 Set dirs to 755 and files to 644

 		
 Autocropping all images in folder

 		
 How to deploy django application on debian server (UWSGI version)

 		
 Install proper version of python

 		
 Install proper version of virtualenv

 		
 Install your application into virtualenv

 		
 Install uwsgi into your virtualenv

 		
 Use supervisord to launch your applicaiton

 		
 Connect uwsgi and nginx

 		
 Connect ngingx and uwsgi via linux file sockets

 		
 Update media and static root

 		
 Update settings py

 		
 Update nginx

 		
 Tweak uwsgi so it scales

 		
 Compress a dir to tar.xz

 		
 Connecting remote display (projector) to i3

 		
 CGI on Nginx or how to run man2html on debian

 		
 New Java Features

 		
 Java 1.7

 		
 java.nio.path package

 		
 Fork Join Framework

 		
 Notable mentions

 		
 Java 1.8

 		
 Streams and Lambdas

 		
 How to disable subpixel rendering in Jetbrains products

 		
 Linux dynamically assigned ports

 		
 Asyncio servers in Python

 		
 How to discard connection in a fast way

 		
 Some remarks about databases

 		
 Read anomalies Anomalies

 		
 Transaction isolation Levels

 		
 Serializability

 		
 MVCC in postgresql

 		
 How does MVCC work

 		
 Start of the transaction

 		
 Data constraints

 		
 Basic operations

 		
 Data visibility

 		
 VACUUM

 		
 Sources

 		
 Should you use BRTFS for your laptop?

 		
 BTRFS COW doesnt play well with some usage patterns

 		
 BTRFS needs garbage collection (or something similar)

 		
 How to deploy django application on debian server (UWSGI version)

 		
 Install proper version of python

 		
 Assumptions about the system

 		
 Install your application into virtualenv

 		
 Install uwsgi into your virtualenv

 		
 Use systemd to launch your applicaiton

 		
 Connect uwsgi and nginx

 		
 Connect ngingx and uwsgi via linux file sockets

 		
 Update media and static root

 		
 Update settings py

 		
 Update nginx

 		
 Tweak uwsgi so it scales

 		
 How to encrypt a usb drive using cryptsetup

 		
 Disk performance

 		
 Attempt 1 or the problem

 		
 Lesson 1: Don’t use BTRFS for data volumes

 		
 Lesson 2: There are some kernel settings that require tweaking

 		
 Lesson three: set noatime to your data partition

 		
 Lesson four: Read a book

 		
 Lesson five: IOPS is an important parameter

 		
 Problem

 		
 Non solutions

 		
 Use cloud

 		
 Just buy SSDs

 		
 Attempt 2

 		
 Lesson 0: Raid is not a backup

 		
 Lesson 1: Raid is everywhere

 		
 Lesson 2: LVM striping is cool

 		
 Lesson 3: Stripe size matters

 		
 Lesson 4: Measure performance

 		
 Lesson 5: How to measure performance

_static/comment-bright.png

_static/ajax-loader.gif

